Rhamphorhynchus /ˌræmfəˈrɪŋkəs/, "beak snout", is a genus of long-tailed pterosaurs in the Jurassic period. Less specialized than contemporary, short-tailed pterodactyloid pterosaurs such as Pterodactylus, it had a long tail, stiffened with ligaments, which ended in a characteristic diamond-shaped vane. The jaws of Rhamphorhynchus
housed needle-like teeth, which were angled forward, with a curved, sharp, beak-like tip lacking teeth, indicating a diet mainly of fish and insects.
Although fragmentary fossil remains possibly belonging to Rhamphorhynchus have been found in England, Tanzania, and Spain, the best preserved specimens come from the Solnhofen limestone of Bavaria, Germany. Many of these fossils preserve not only the bones but impressions of soft tissues such as wing membranes. Scattered teeth believed to belong to Rhamphorhynchus have been found in Portugal as well.[1]
The largest known specimen of Rhamphorhynchus muensteri (catalog number BMNH 37002) measures 1.26 meters (4.1 ft) long with a wingspan of 1.81 m (5.9 ft).
Skull[]
Contrary to a 1927 report by pterosaur researcher Ferdinand Broili, Rhamphorhynchus lacked any bony or soft tissue crest, as seen in several species of contemporary small pterodactyloid pterosaurs. Broili claimed to have found a two millimeter tall crest made of thin bone that ran much of the skulls length in one Rhamphorhynchus specimen, evidenced by an impression in the surrounding rock and a few small fragments of the crest itself.[2] However, subsequent examination of this specimen by Wellnhofer in 1975 and Bennett in 2002 using both visible and ultraviolet light found no trace of a crest, and both concluded that Broili was mistaken. The supposed crest, they concluded, was simply an artifact of preservation.[3][4]
The teeth of Rhamphorhynchus intermesh when the jaw is closed and are suggestive of a piscivorous diet.[1] There are twenty teeth in the upper jaws and fourteen in the lower jaws.[1]
Traditionally, the large size variation between specimens of Rhamphorhynchus has been taken to represent species variation. However, in a 1995 paper, Bennett argued that these "species" actually represent year-classes of a single species, Rhamphorhynchus muensteri, from flaplings to adults. Following from this interpretation, Bennett found several notable changes that occurred in R. muensteri as the animal aged.[12]
Juvenile Rhamphorhynchus had relatively short skulls with large eyes, and the toothless beak-like tips of the jaws were shorter in juveniles than adults, with rounded, blunt lower jaw tips eventually becoming slender and pointed as the animals grew. Adult Rhamphorhynchus also developed a strong upward "hook" at the end of the lower jaw. The number of teeth remained constant from juvenile to adult, though the teeth became relatively shorter and stockier as the animals grew, possibly to accommodate larger and more powerful prey. The pelvic and pectoral girdles fused as the animals aged, with full pectoral fusion attained by one year of age.[12]
The shape of the tail vane also changed across various age classes of Rhamphorhynchus. In juveniles, the vane was shallow relative to the tail and roughly oval, or "lancet-shaped". As growth progressed, the tail vane became diamond-shaped, and finally triangular in the largest individuals.[12]
The smallest known Rhamphorhynchus specimen has a wingspan of only 290 millimeters; however, it is likely that even such a small individual was capable of flight. Bennett examined two possibilities for hatchlings: that they were altricial, requiring some period of parental care before leaving the nest, or that they were precocial, hatching with sufficient size and ability for flight. If precocious, Bennett suggested that clutches would be small, with only one or two eggs laid per clutch, to compensate for the relatively large size of the hatchings. Bennett did not speculate on which possibility was more likely, though the discovery of a pterosaur embryo (Avgodectes) with strongly ossified bones suggests that pterosaurs in general were precocial, able to fly soon after hatching with minimal parental care.[14] This theory was contested by a histological study of Rhamphorhynchus that showed the initial rapid growth was followed by a prolonged period of slow growth.[15]
Having determined that Rhamphorhynchus specimens fit into discrete year-classes, Bennett was able to estimate growth rate during one year by comparing the size of one-year-old specimens with two-year-old specimens. He found that the average growth rate during the first year of life for Rhamphorhynchus was 130% to 173%, slightly faster than the growth rate in alligators. Growth likely slowed considerably after sexual maturity, so it would have taken more than three years to attain maximum adult size.[12]
This growth rate is much slower than the rate seen in large pterodactyloid pterosaurs such as Pteranodon, which attained near-adult size within the first year of life. Additionally, pterodactyloids had determinate growth, meaning that the animals reached a fixed maximum adult size and stopped growing. Previous assumptions of rapid growth rate in rhamphorhynchoids were based on the assumption that they needed to be warm-blooded to sustain active flight. Warm-blooded animals, like modern birds and bats, normally show rapid growth to adult size and determinate growth. Because there is no evidence for either in Rhamphorhynchus, Bennett considered his findings consistent with an ectothermic metabolism, though he recommended more studies needed to be done. Cold-blooded Rhamphorhynchus, Bennett suggested, may have basked in the sun or worked their muscles to accumulate enough energy for bouts of flight, and cooled to ambient temperature when not active to save energy, like modern reptiles.[12]
Both Koh Ting-Pong and Peter Wellnhofer recognized two distinct groups among adult Rhamphorhynchus muensteri, differentiated by the proportions of the neck, wing, and hind limbs, but particularly in the ratio of skull to humerus length. Both researchers noted that these two groups of specimens were found in roughly a 1:1 ratio, and interpreted them as different sexes.[3][16] Bennett tested for sexual dimorphism in Rhamphorhynchus by using a statistical analysis, and found that the specimens did indeed group together into small-headed and large-headed sets. However, without any known variation in the actual form of the bones or soft tissue (morphological differences), he found the case for sexual dimorphism inconclusive.[12]
Head orientation[]
In 2003, a team of researchers led by Lawrence Witmer studied the brain anatomy of several types of pterosaurs, including Rhamphorhynchus muensteri, using endocasts of the brain they retrieved by performing CAT scans of fossil skulls. Using comparisons to modern animals, they were able to estimate various physical attributes of pterosaurs, including relative head orientation during flight and coordination of the wing membrane muscles. Witmer and his team found that Rhamphorhynchus held its head parallel to the ground due to the orientation of the osseous labyrinth of the inner ear, which helps animals detect balance. In contrast, pterodactyloid pterosaurs such as Anhanguera appear to have normally held their heads at a downward angle, both in flight and while on the ground.[17]
Daily activity patterns[]
Comparisons between the scleral rings of Rhamphorhynchus and modern birds and reptiles suggest that it may have been nocturnal, and may have had activity patterns similar to those of modern nocturnal seabirds. This may also indicate niche partitioning with contemporary pterosaurs inferred to be diurnal, such as Scaphognathus and Pterodactylus.[18]
Ecology[]
Several limestone slabs have been discovered in which fossils of Rhamphorhynchus are found in close association with the ganoid fish Aspidorhynchus. In one of these specimens, the jaws of an Aspidorhynchus pass through the wings of the Rhamphorhynchus specimen. The Rhamphorhynchus also has the remains of a small fish, possibly Leptolepides, in its throat. This slab, cataloged as WDC CSG 255, may represent two levels of predation; one by Rhamphorhynchus and one by Aspidorhynchus. In a 2012 description of WDC CSG 255, researchers proposed that the Rhamphorhynchus individual had just caught a Leptolepides while it was flying low over a body of water. As the Leptolepides was travelling down its pharynx, a large Aspidorhynchus would have attacked from below the water, accidentally puncturing the left wing membrane of the Rhamphorhynchus with its sharp rostrum in the process. The teeth in its snout were ensnared in the fibrous tissue of the wing membrane, and as the fish thrashed to release itself the left wing of Rhamphorhynchus was pulled backward into the distorted position seen in the fossil. The encounter resulted in the death of both individuals, most likely because the two animals sank into an anoxic layer in the water body, depriving the fish of oxygen. The two may have been preserved together as the weight of the head of Aspidorhynchus held down the much lighter body of Rhamphorhynchus.[19]
http://dino.wikia.com/wiki/Dinosaur_Wiki:All_articles